Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Physics-guided machine learning (PGML) has become a prevalent approach in studying scientific systems due to its ability to integrate scientific theories for enhancing machine learning (ML) models. However, most PGML approaches are tailored to isolated and relatively simple tasks, which lim- its their applicability to complex systems involving multiple interacting processes and numerous influencing features. In this paper, we propose a Physics-Guided Foundation Model (PGFM) that combines pre-trained ML models and physics- based models and leverages their complementary strengths to improve the modeling of multiple coupled processes. To effectively conduct pre-training, we construct a simulated en- vironmental system that encompasses a wide range of influ- encing features and various simulated variables generated by physics-based models. The model is pre-trained in this sys- tem to adaptively select important feature interactions guided by multi-task objectives. We then fine-tune the model for each specific task using true observations, while maintaining con- sistency with established physical theories, such as the prin- ciples of mass and energy conservation. We demonstrate the effectiveness of this methodology in modeling water temper- ature and dissolved oxygen dynamics in real-world lakes. The proposed PGFM is also broadly applicable to a range of sci- entific fields where physics-based models are being used.more » « lessFree, publicly-accessible full text available April 1, 2026
-
Free, publicly-accessible full text available January 1, 2026
-
Human-generated Spatial-Temporal Data (HSTD), represented as trajectory sequences, has undergone a data revolution, thanks to advances in mobile sensing, data mining, and AI. Previous studies have revealed the effectiveness of employing attention mechanisms to analyze massive HSTD. However, traditional attention models face challenges when managing lengthy and noisy trajectories as their computation comes with large memory overheads. Furthermore, attention scores within HSTD trajectories are sparse (i.e., most of the scores are zeros), and clustered with varying lengths (i.e., consecutive tokens clustered with similar scores). To address these challenges, we introduce an innovative strategy named Memory-efficient Trajectory Attention (MeTA). We leverage complicated spatial-temporal features (e.g., traffic speed, proximity to PoIs) and design an innovative feature-based trajectory partition technique to shrink trajectory length. Additionally, we present a learnable dynamic sorting mechanism, with which attention is only computed between sub-trajectories that have prominent correlations. Empirical validations using real-world HSTD demonstrate that our approach not only yields competitive results but also significantly lowers memory usage compared with state-of-the-art methods. Our approach presents innovative solutions for memory-efficient trajectory attention, offering valuable insights for handling HSTD efficiently.more » « less
-
Accurate predictions of water temperature are the foundation for many decisions and regulations, with direct impacts on water quality, fishery yields, and power production. Building accurate broad-scale models for lake temperature prediction remains challenging in practice due to the variability in the data distribution across different lake systems monitored by static and time-series data. In this paper, to tackle the above challenges, we propose a novel machine learning based approach for integrating static and time-series data in deep recurrent models, which we call Invertibility-Aware-Long Short-Term Memory(IA-LSTM), and demonstrate its effectiveness in predicting lake temperature. Our proposed method integrates components of the Invertible Network and LSTM to better predict temperature profiles (forward modeling) and infer the static features (i.e., inverse modeling) that can eventually enhance the prediction when static variables are missing. We evaluate our method on predicting the temperature profile of 450 lakes in the Midwestern U.S. and report a relative improvement of 4\% to capture data heterogeneity and simultaneously outperform baseline predictions by 12\% when static features are unavailable.more » « less
-
High capacity end-to-end approaches for human motion (behavior) prediction have the ability to represent subtle nuances in human behavior, but struggle with robustness to out of distribution inputs and tail events. Planning-based prediction, on the other hand, can reliably output decent-but-not-great predictions: it is much more stable in the face of distribution shift (as we verify in this work), but it has high inductive bias, missing important aspects that drive human decisions, and ignoring cognitive biases that make human behavior suboptimal. In this work, we analyze one family of approaches that strive to get the best of both worlds: use the end-to-end predictor on common cases, but do not rely on it for tail events / out-of-distribution inputs -- switch to the planning-based predictor there. We contribute an analysis of different approaches for detecting when to make this switch, using an autonomous driving domain. We find that promising approaches based on ensembling or generative modeling of the training distribution might not be reliable, but that there very simple methods which can perform surprisingly well -- including training a classifier to pick up on tell-tale issues in predicted trajectories.more » « less
-
null (Ed.)Self-healing triboelectric nanogenerators (SH-TENGs) with fast self-healing, high output performance, and wearing comfort have wide and promising applications in wearable electronic devices. This work presents a high-performance hydrogel-based SH-TENG, which consists of a high dielectric triboelectric layer (HDTL), a self-healing hydrogel electrode layer (SHEL), and a physical cross-linking layer (PCLL). Carbon nanotubes (CNTs), obtained by a chemical vapor deposition (CVD) method, were added into polydimethylsiloxane (PDMS) to produce the HDTL. Compared with pure PDMS, the short-circuit transferred charge (44 nC) and the open circuit voltage (132 V) are doubled for PDMS with 0.01 wt% CNTs. Glycerin, polydopamine particles (PDAP) and graphene were added to poly (vinyl alcohol) (PVA) to prepare the self-healing hydrogel electrode layer. SHEL can physically self-heal in ~1 min when exposed to air. The self-healing efficiency reaches up to 98%. The PCLL is made of poly(methylhydrosiloxane) (PMHS) and PDMS. It forms a good physical bond between the hydrophilic hydrogel and hydrophobic PDMS layers. The electric output performance of the SH-TENG can reach 94% of the undamaged one in 1 min. The SH-TENG (6 × 6 cm2) exhibits good stability and superior electrical performance, enabling it to power 37 LEDs simultaneously.more » « less
An official website of the United States government

Full Text Available